dose=c(1,1,2,2,3,3) response=c(0,1,0,1,0,1) count=c(7,3,5,5,2,8) toxic = data.frame(dose, response, count) toxic out = glm(response~dose, weights = count, family = binomial, data = toxic) summary(out) # Coefficients: # Estimate Std. Error z value Pr(>|z|) # (Intercept) -2.0496 1.0888 -1.882 0.0598 . # dose 1.1051 0.5186 2.131 0.0331 * # dose B = 1.1051 => Exp(1.1051) = 3.02 # dose 1 증가시 반응성 3.02배 증가한다고 볼 수 있음 # p-value = 0.03 < 0.05, 귀무가설 기각 => 약의 종류에 따라 반응이 다를 수 있음 plot(response~dose, data=toxic, type="n", main="Predicted Probability of Response") curve(predict(out, data.frame(dose=x), type="resp"), add=TRUE)