correllation, recursive

main
syneffort 3 years ago
commit fb6754aeac
  1. 26
      1.Correllation.r
  2. 36
      2.Recursive.r

@ -0,0 +1,26 @@
library(corrplot)
library(lattice)
a <- mtcars
a
mcor2 <- cor(mtcars$gear, mtcars$carb)
mcor2
xyplot(gear ~ carb, data = mtcars)
lm <- plot(mtcars$gear, mtcars$carb)
abline(lm(mtcars$gear~mtcars$carb))
mcor <- cor(mtcars)
mcor
round(mcor, 2)
corrplot(mcor)
plot(mtcars)
library(ggplot2)
qplot(gear, carb, data = mtcars)
cor(mtcars$wt, mtcars$mpg)
qplot(wt, mpg, data=mtcars, color=factor(carb))

@ -0,0 +1,36 @@
year <- c(26,16,20,7,22,15,29,28,17,3,1,
16,19,13,27,4,30,8,3,12)
annual_salary <- c(1267,887,1022,511,1193,795,
1713,1477,991,455,324,944,1232,
808,1296,486,1516,565,299,830)
data <- data.frame(year, annual_salary)
summary(data)
plot(year, annual_salary)
cor(year, annual_salary)
ls <- lm(annual_salary~year, data = data)
summary(ls)
# Residuals:
# Min 1Q Median 3Q Max
# -115.282 -59.636 -3.018 37.011 215.873
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 252.375 39.766 6.346 5.59e-06 ***
# year 42.922 2.179 19.700 1.25e-13 ***
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 89.02 on 18 degrees of freedom
# Multiple R-squared: 0.9557, Adjusted R-squared: 0.9532
# F-statistic: 388.1 on 1 and 18 DF, p-value: 1.25e-13
# 1) 회귀식: y = 252.375 + 42.922x
# 2) 총 변수 중 회귀선에 의에 95.57%(Multiple R-square)가 설명됨
# 3) 유의수준 0.001에서 p-value가 더 작으므로 귀무가설 기각
# 해석: 회귀계수가 0이 아니며 귀구가설이 기각되어 근무연수는 연봉에 매우 영향을 미친다고 보여짐
Loading…
Cancel
Save